TCP/IP Protocol Suite

Wishbone SubCircuit




eth_wishbone.v
`include "ethmac_defines.v"
        `include "timescale.v"


        module eth_wishbone
          (

           // WISHBONE common
           WB_CLK_I, WB_DAT_I, WB_DAT_O,

           // WISHBONE slave
           WB_ADR_I, WB_WE_I, WB_ACK_O,
           BDCs,

           Reset,

           // WISHBONE master
           m_wb_adr_o, m_wb_sel_o, m_wb_we_o,
           m_wb_dat_o, m_wb_dat_i, m_wb_cyc_o,
           m_wb_stb_o, m_wb_ack_i, m_wb_err_i,

           m_wb_cti_o, m_wb_bte_o,

           //TX
           MTxClk, TxStartFrm, TxEndFrm, TxUsedData, TxData,
           TxRetry, TxAbort, TxUnderRun, TxDone, PerPacketCrcEn,
           PerPacketPad,

           //RX
           MRxClk, RxData, RxValid, RxStartFrm, RxEndFrm, RxAbort,
           RxStatusWriteLatched_sync2,

           // Register
           r_TxEn, r_RxEn, r_TxBDNum, r_RxFlow, r_PassAll,

           // Interrupts
           TxB_IRQ, TxE_IRQ, RxB_IRQ, RxE_IRQ, Busy_IRQ,

           // Rx Status
           InvalidSymbol, LatchedCrcError, RxLateCollision, ShortFrame, DribbleNibble,
           ReceivedPacketTooBig, RxLength, LoadRxStatus, ReceivedPacketGood,
           AddressMiss,
           ReceivedPauseFrm,

           // Tx Status
           RetryCntLatched, RetryLimit, LateCollLatched, DeferLatched, RstDeferLatched,
           CarrierSenseLost

           // Bist
        `ifdef ETH_BIST
           ,
           // debug chain signals
           mbist_si_i,       // bist scan serial in
           mbist_so_o,       // bist scan serial out
           mbist_ctrl_i        // bist chain shift control
        `endif

        `ifdef WISHBONE_DEBUG
           ,
           dbg_dat0
        `endif


           );

        parameter TX_FIFO_DATA_WIDTH = `ETH_TX_FIFO_DATA_WIDTH;
        parameter TX_FIFO_DEPTH      = `ETH_TX_FIFO_DEPTH;
        parameter TX_FIFO_CNT_WIDTH  = `ETH_TX_FIFO_CNT_WIDTH;
        parameter RX_FIFO_DATA_WIDTH = `ETH_RX_FIFO_DATA_WIDTH;
        parameter RX_FIFO_DEPTH      = `ETH_RX_FIFO_DEPTH;
        parameter RX_FIFO_CNT_WIDTH  = `ETH_RX_FIFO_CNT_WIDTH;

        // WISHBONE common
        input           WB_CLK_I;       // WISHBONE clock
        input  [31:0]   WB_DAT_I;       // WISHBONE data input
        output [31:0]   WB_DAT_O;       // WISHBONE data output

        // WISHBONE slave
        input   [9:2]   WB_ADR_I;       // WISHBONE address input
        input           WB_WE_I;        // WISHBONE write enable input
        input   [3:0]   BDCs;           // Buffer descriptors are selected
        output          WB_ACK_O;       // WISHBONE acknowledge output

        // WISHBONE master
        output  [29:0]  m_wb_adr_o;     // 
        output   [3:0]  m_wb_sel_o;     // 
        output          m_wb_we_o;      // 
        output  [31:0]  m_wb_dat_o;     // 
        output          m_wb_cyc_o;     // 
        output          m_wb_stb_o;     // 
        input   [31:0]  m_wb_dat_i;     // 
        input           m_wb_ack_i;     // 
        input           m_wb_err_i;     // 

        output   [2:0]  m_wb_cti_o;     // Cycle Type Identifier
        output   [1:0]  m_wb_bte_o;     // Burst Type Extension
        reg      [2:0]  m_wb_cti_o;     // Cycle Type Identifier

        input           Reset;       // Reset signal

        // Rx Status signals
        input           InvalidSymbol;    // Invalid symbol was received during reception in 100 Mbps mode
        input           LatchedCrcError;  // CRC error
        input           RxLateCollision;  // Late collision occured while receiving frame
        input           ShortFrame;       // Frame shorter then the minimum size
                                          // (r_MinFL) was received while small
                                          // packets are enabled (r_RecSmall)
        input           DribbleNibble;    // Extra nibble received
        input           ReceivedPacketTooBig;// Received packet is bigger than r_MaxFL
        input    [15:0] RxLength;         // Length of the incoming frame
        input           LoadRxStatus;     // Rx status was loaded
        input           ReceivedPacketGood;  // Received packet's length and CRC are
                                             // good
        input           AddressMiss;      // When a packet is received AddressMiss
                                          // status is written to the Rx BD
        input           r_RxFlow;
        input           r_PassAll;
        input           ReceivedPauseFrm;

        // Tx Status signals
        input     [3:0] RetryCntLatched;  // Latched Retry Counter
        input           RetryLimit;       // Retry limit reached (Retry Max value +1
                                          // attempts were made)
        input           LateCollLatched;  // Late collision occured
        input           DeferLatched;     // Defer indication (Frame was defered
                                          // before sucessfully sent)
        output          RstDeferLatched;
        input           CarrierSenseLost; // Carrier Sense was lost during the
                                          // frame transmission

        // Tx
        input           MTxClk;         // Transmit clock (from PHY)
        input           TxUsedData;     // Transmit packet used data
        input           TxRetry;        // Transmit packet retry
        input           TxAbort;        // Transmit packet abort
        input           TxDone;         // Transmission ended
        output          TxStartFrm;     // Transmit packet start frame
        output          TxEndFrm;       // Transmit packet end frame
        output  [7:0]   TxData;         // Transmit packet data byte
        output          TxUnderRun;     // Transmit packet under-run
        output          PerPacketCrcEn; // Per packet crc enable
        output          PerPacketPad;   // Per packet pading

        // Rx
        input           MRxClk;         // Receive clock (from PHY)
        input   [7:0]   RxData;         // Received data byte (from PHY)
        input           RxValid;        // 
        input           RxStartFrm;     // 
        input           RxEndFrm;       // 
        input           RxAbort;        // This signal is set when address doesn't
                                        // match.
        output          RxStatusWriteLatched_sync2;

        //Register
        input           r_TxEn;         // Transmit enable
        input           r_RxEn;         // Receive enable
        input   [7:0]   r_TxBDNum;      // Receive buffer descriptor number

        // Interrupts
        output TxB_IRQ;
        output TxE_IRQ;
        output RxB_IRQ;
        output RxE_IRQ;
        output Busy_IRQ;


        // Bist
        `ifdef ETH_BIST
        input   mbist_si_i;       // bist scan serial in
        output  mbist_so_o;       // bist scan serial out
        input [`ETH_MBIST_CTRL_WIDTH - 1:0] mbist_ctrl_i; // bist chain shift control
        `endif

        `ifdef WISHBONE_DEBUG
           output [31:0]                       dbg_dat0;
        `endif


        reg TxB_IRQ;
        reg TxE_IRQ;
        reg RxB_IRQ;
        reg RxE_IRQ;

        reg             TxStartFrm;
        reg             TxEndFrm;
        reg     [7:0]   TxData;

        reg             TxUnderRun;
        reg             TxUnderRun_wb;

        reg             TxBDRead;
        wire            TxStatusWrite;

        reg     [1:0]   TxValidBytesLatched;

        reg    [15:0]   TxLength;
        reg    [15:0]   LatchedTxLength;
        reg   [14:11]   TxStatus;

        reg   [14:13]   RxStatus;

        reg             TxStartFrm_wb;
        reg             TxRetry_wb;
        reg             TxAbort_wb;
        reg             TxDone_wb;

        reg             TxDone_wb_q;
        reg             TxAbort_wb_q;
        reg             TxRetry_wb_q;
        reg             TxRetryPacket;
        reg             TxRetryPacket_NotCleared;
        reg             TxDonePacket;
        reg             TxDonePacket_NotCleared;
        reg             TxAbortPacket;
        reg             TxAbortPacket_NotCleared;
        reg             RxBDReady;
        reg             RxReady;
        reg             TxBDReady;

        reg             RxBDRead;

        reg    [31:0]   TxDataLatched;
        reg     [1:0]   TxByteCnt;
        reg             LastWord;
        reg             ReadTxDataFromFifo_tck;

        reg             BlockingTxStatusWrite;
        reg             BlockingTxBDRead;

        reg             Flop;

        reg     [7:1]   TxBDAddress;
        reg     [7:1]   RxBDAddress;

        reg             TxRetrySync1;
        reg             TxAbortSync1;
        reg             TxDoneSync1;

        reg             TxAbort_q;
        reg             TxRetry_q;
        reg             TxUsedData_q;

        reg    [31:0]   RxDataLatched2;

        reg    [31:8]   RxDataLatched1;     // Big Endian Byte Ordering

        reg     [1:0]   RxValidBytes;
        reg     [1:0]   RxByteCnt;
        reg             LastByteIn;
        reg             ShiftWillEnd;

        reg             WriteRxDataToFifo;
        reg    [15:0]   LatchedRxLength;
        reg             RxAbortLatched;

        reg             ShiftEnded;
        reg             RxOverrun;

        reg     [3:0]   BDWrite;                    // BD Write Enable for access from WISHBONE side
        reg             BDRead;                     // BD Read access from WISHBONE side
        wire   [31:0]   RxBDDataIn;                 // Rx BD data in
        wire   [31:0]   TxBDDataIn;                 // Tx BD data in

        reg             TxEndFrm_wb;

        wire            TxRetryPulse;
        wire            TxDonePulse;
        wire            TxAbortPulse;

        wire            StartRxBDRead;

        wire            StartTxBDRead;

        wire            TxIRQEn;
        wire            WrapTxStatusBit;

        wire            RxIRQEn;
        wire            WrapRxStatusBit;

        wire    [1:0]   TxValidBytes;

        wire    [7:1]   TempTxBDAddress;
        wire    [7:1]   TempRxBDAddress;

        wire            RxStatusWrite;
        wire            RxBufferFull;
        wire            RxBufferAlmostEmpty;
        wire            RxBufferEmpty;

        reg             WB_ACK_O;

        wire    [8:0]   RxStatusIn;
        reg     [8:0]   RxStatusInLatched;

        reg WbEn, WbEn_q;
        reg RxEn, RxEn_q;
        reg TxEn, TxEn_q;
        reg r_TxEn_q;
        reg r_RxEn_q;

        wire ram_ce;
        wire [3:0]  ram_we;
        wire ram_oe;
        reg [7:0]   ram_addr;
        reg [31:0]  ram_di;
        wire [31:0] ram_do;

        wire StartTxPointerRead;
        reg TxPointerRead;
        reg TxEn_needed;
        reg RxEn_needed;

        wire StartRxPointerRead;
        reg RxPointerRead;

        // RX shift ending signals
        reg ShiftEnded_rck;
        reg ShiftEndedSync1;
        reg ShiftEndedSync2;
        reg ShiftEndedSync3;
        reg ShiftEndedSync_c1;
        reg ShiftEndedSync_c2;

        wire StartShiftWillEnd;

        reg StartOccured;
        reg TxStartFrm_sync1;
        reg TxStartFrm_sync2;
        reg TxStartFrm_syncb1;
        reg TxStartFrm_syncb2;

        wire TxFifoClear;
        wire TxBufferAlmostFull;
        wire TxBufferFull;
        wire TxBufferEmpty;
        wire TxBufferAlmostEmpty;
        wire SetReadTxDataFromMemory;
        reg BlockReadTxDataFromMemory;

        reg tx_burst_en;
        reg rx_burst_en;
        reg  [`ETH_BURST_CNT_WIDTH-1:0] tx_burst_cnt;

        wire ReadTxDataFromMemory_2;
        wire tx_burst;

        wire [31:0] TxData_wb;
        wire ReadTxDataFromFifo_wb;

        wire [TX_FIFO_CNT_WIDTH-1:0] txfifo_cnt;
        wire [RX_FIFO_CNT_WIDTH-1:0] rxfifo_cnt;

        reg  [`ETH_BURST_CNT_WIDTH-1:0] rx_burst_cnt;

        wire rx_burst;
        wire enough_data_in_rxfifo_for_burst;
        wire enough_data_in_rxfifo_for_burst_plus1;

        reg ReadTxDataFromMemory;
        wire WriteRxDataToMemory;

        reg MasterWbTX;
        reg MasterWbRX;

        reg [29:0] m_wb_adr_o;
        reg        m_wb_cyc_o;
        reg  [3:0] m_wb_sel_o;
        reg        m_wb_we_o;

        wire TxLengthEq0;
        wire TxLengthLt4;

        reg BlockingIncrementTxPointer;
        reg [31:2] TxPointerMSB;
        reg [1:0]  TxPointerLSB;
        reg [1:0]  TxPointerLSB_rst;
        reg [31:2] RxPointerMSB;
        reg [1:0]  RxPointerLSB_rst;

        wire RxBurstAcc;
        wire RxWordAcc;
        wire RxHalfAcc;
        wire RxByteAcc;

        wire ResetTxBDReady;
        reg BlockingTxStatusWrite_sync1;
        reg BlockingTxStatusWrite_sync2;
        reg BlockingTxStatusWrite_sync3;

        reg cyc_cleared;
        reg IncrTxPointer;

        reg  [3:0] RxByteSel;
        wire MasterAccessFinished;

        reg LatchValidBytes;
        reg LatchValidBytes_q;

        // Start: Generation of the ReadTxDataFromFifo_tck signal and synchronization to the WB_CLK_I
        reg ReadTxDataFromFifo_sync1;
        reg ReadTxDataFromFifo_sync2;
        reg ReadTxDataFromFifo_sync3;
        reg ReadTxDataFromFifo_syncb1;
        reg ReadTxDataFromFifo_syncb2;
        reg ReadTxDataFromFifo_syncb3;

        reg RxAbortSync1;
        reg RxAbortSync2;
        reg RxAbortSync3;
        reg RxAbortSync4;
        reg RxAbortSyncb1;
        reg RxAbortSyncb2;

        reg RxEnableWindow;

        wire SetWriteRxDataToFifo;

        reg WriteRxDataToFifoSync1;
        reg WriteRxDataToFifoSync2;
        reg WriteRxDataToFifoSync3;

        wire WriteRxDataToFifo_wb;

        reg LatchedRxStartFrm;
        reg SyncRxStartFrm;
        reg SyncRxStartFrm_q;
        reg SyncRxStartFrm_q2;
        wire RxFifoReset;

        wire TxError;
        wire RxError;

        reg RxStatusWriteLatched;
        reg RxStatusWriteLatched_sync1;
        reg RxStatusWriteLatched_sync2;
        reg RxStatusWriteLatched_syncb1;
        reg RxStatusWriteLatched_syncb2;

        assign m_wb_bte_o = 2'b00;    // Linear burst

        assign m_wb_stb_o = m_wb_cyc_o;

        always @ (posedge WB_CLK_I)
        begin
          WB_ACK_O <= (|BDWrite) & WbEn & WbEn_q | BDRead & WbEn & ~WbEn_q;
        end

        assign WB_DAT_O = ram_do;

        // Generic synchronous single-port RAM interface
        eth_spram_256x32
             bd_ram
             (
              .clk     (WB_CLK_I),
              .rst     (Reset),
              .ce      (ram_ce),
              .we      (ram_we),
              .oe      (ram_oe),
              .addr    (ram_addr),
              .di      (ram_di),
              .dato    (ram_do)
        `ifdef ETH_BIST
              ,
              .mbist_si_i       (mbist_si_i),
              .mbist_so_o       (mbist_so_o),
              .mbist_ctrl_i       (mbist_ctrl_i)
        `endif
              );

        assign ram_ce = 1'b1;
        assign ram_we = (BDWrite & {4{(WbEn & WbEn_q)}}) |
                        {4{(TxStatusWrite | RxStatusWrite)}};
        assign ram_oe = BDRead & WbEn & WbEn_q | TxEn & TxEn_q &
                        (TxBDRead | TxPointerRead) | RxEn & RxEn_q &
                        (RxBDRead | RxPointerRead);


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxEn_needed <= 1'b0;
          else
          if(~TxBDReady & r_TxEn & WbEn & ~WbEn_q)
            TxEn_needed <= 1'b1;
          else
          if(TxPointerRead & TxEn & TxEn_q)
            TxEn_needed <= 1'b0;
        end

        // Enabling access to the RAM for three devices.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            begin
              WbEn <= 1'b1;
              RxEn <= 1'b0;
              TxEn <= 1'b0;
              ram_addr <= 8'h0;
              ram_di <= 32'h0;
              BDRead <= 1'b0;
              BDWrite <= 0;
            end
          else
            begin
              // Switching between three stages depends on enable signals
             /* verilator lint_off CASEINCOMPLETE */ // JB
              case ({WbEn_q, RxEn_q, TxEn_q, RxEn_needed, TxEn_needed})  // synopsys parallel_case
                5'b100_10, 5'b100_11 :
                  begin
                    WbEn <= 1'b0;
                    RxEn <= 1'b1;  // wb access stage and r_RxEn is enabled
                    TxEn <= 1'b0;
                    ram_addr <= {RxBDAddress, RxPointerRead};
                    ram_di <= RxBDDataIn;
                  end
                5'b100_01 :
                  begin
                    WbEn <= 1'b0;
                    RxEn <= 1'b0;
                    TxEn <= 1'b1;  // wb access stage, r_RxEn is disabled but
                                   // r_TxEn is enabled
                    ram_addr <= {TxBDAddress, TxPointerRead};
                    ram_di <= TxBDDataIn;
                  end
                5'b010_00, 5'b010_10 :
                  begin
                    WbEn <= 1'b1;  // RxEn access stage and r_TxEn is disabled
                    RxEn <= 1'b0;
                    TxEn <= 1'b0;
                    ram_addr <= WB_ADR_I[9:2];
                    ram_di <= WB_DAT_I;
                    BDWrite <= BDCs[3:0] & {4{WB_WE_I}};
                    BDRead <= (|BDCs) & ~WB_WE_I;
                  end
                5'b010_01, 5'b010_11 :
                  begin
                    WbEn <= 1'b0;
                    RxEn <= 1'b0;
                    TxEn <= 1'b1;  // RxEn access stage and r_TxEn is enabled
                    ram_addr <= {TxBDAddress, TxPointerRead};
                    ram_di <= TxBDDataIn;
                  end
                5'b001_00, 5'b001_01, 5'b001_10, 5'b001_11 :
                  begin
                    WbEn <= 1'b1;  // TxEn access stage (we always go to wb
                                   // access stage)
                    RxEn <= 1'b0;
                    TxEn <= 1'b0;
                    ram_addr <= WB_ADR_I[9:2];
                    ram_di <= WB_DAT_I;
                    BDWrite <= BDCs[3:0] & {4{WB_WE_I}};
                    BDRead <= (|BDCs) & ~WB_WE_I;
                  end
                5'b100_00 :
                  begin
                    WbEn <= 1'b0;  // WbEn access stage and there is no need
                                   // for other stages. WbEn needs to be
                                   // switched off for a bit
                  end
                5'b000_00 :
                  begin
                    WbEn <= 1'b1;  // Idle state. We go to WbEn access stage.
                    RxEn <= 1'b0;
                    TxEn <= 1'b0;
                    ram_addr <= WB_ADR_I[9:2];
                    ram_di <= WB_DAT_I;
                    BDWrite <= BDCs[3:0] & {4{WB_WE_I}};
                    BDRead <= (|BDCs) & ~WB_WE_I;
                  end
              endcase
              /* verilator lint_on CASEINCOMPLETE */
            end
        end


        // Delayed stage signals
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            begin
              WbEn_q <= 1'b0;
              RxEn_q <= 1'b0;
              TxEn_q <= 1'b0;
              r_TxEn_q <= 1'b0;
              r_RxEn_q <= 1'b0;
            end
          else
            begin
              WbEn_q <= WbEn;
              RxEn_q <= RxEn;
              TxEn_q <= TxEn;
              r_TxEn_q <= r_TxEn;
              r_RxEn_q <= r_RxEn;
            end
        end

        // Changes for tx occur every second clock. Flop is used for this manner.
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            Flop <= 1'b0;
          else
          if(TxDone | TxAbort | TxRetry_q)
            Flop <= 1'b0;
          else
          if(TxUsedData)
            Flop <= ~Flop;
        end

        assign ResetTxBDReady = TxDonePulse | TxAbortPulse | TxRetryPulse;

        // Latching READY status of the Tx buffer descriptor
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxBDReady <= 1'b0;
          else
          if(TxEn & TxEn_q & TxBDRead)
            // TxBDReady is sampled only once at the beginning.
            TxBDReady <= ram_do[15] & (ram_do[31:16] > 4);
          else
          // Only packets larger then 4 bytes are transmitted.
          if(ResetTxBDReady)
            TxBDReady <= 1'b0;
        end

        // Reading the Tx buffer descriptor
        assign StartTxBDRead = (TxRetryPacket_NotCleared | TxStatusWrite) &
                               ~BlockingTxBDRead & ~TxBDReady;

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxBDRead <= 1'b1;
          else
          if(StartTxBDRead)
            TxBDRead <= 1'b1;
          else
          if(TxBDReady)
            TxBDRead <= 1'b0;
        end

        // Reading Tx BD pointer
        assign StartTxPointerRead = TxBDRead & TxBDReady;

        // Reading Tx BD Pointer
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxPointerRead <= 1'b0;
          else
          if(StartTxPointerRead)
            TxPointerRead <= 1'b1;
          else
          if(TxEn_q)
            TxPointerRead <= 1'b0;
        end


        // Writing status back to the Tx buffer descriptor
        assign TxStatusWrite = (TxDonePacket_NotCleared | TxAbortPacket_NotCleared) &
                               TxEn & TxEn_q & ~BlockingTxStatusWrite;


        // Status writing must occur only once. Meanwhile it is blocked.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            BlockingTxStatusWrite <= 1'b0;
          else
          if(~TxDone_wb & ~TxAbort_wb)
            BlockingTxStatusWrite <= 1'b0;
          else
          if(TxStatusWrite)
            BlockingTxStatusWrite <= 1'b1;
        end


        // Synchronizing BlockingTxStatusWrite to MTxClk
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            BlockingTxStatusWrite_sync1 <= 1'b0;
          else
            BlockingTxStatusWrite_sync1 <= BlockingTxStatusWrite;
        end

        // Synchronizing BlockingTxStatusWrite to MTxClk
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            BlockingTxStatusWrite_sync2 <= 1'b0;
          else
            BlockingTxStatusWrite_sync2 <= BlockingTxStatusWrite_sync1;
        end

        // Synchronizing BlockingTxStatusWrite to MTxClk
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            BlockingTxStatusWrite_sync3 <= 1'b0;
          else
            BlockingTxStatusWrite_sync3 <= BlockingTxStatusWrite_sync2;
        end

        assign RstDeferLatched = BlockingTxStatusWrite_sync2 &
                                 ~BlockingTxStatusWrite_sync3;

        // TxBDRead state is activated only once. 
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            BlockingTxBDRead <= 1'b0;
          else
          if(StartTxBDRead)
            BlockingTxBDRead <= 1'b1;
          else
          if(~StartTxBDRead & ~TxBDReady)
            BlockingTxBDRead <= 1'b0;
        end


        // Latching status from the tx buffer descriptor
        // Data is avaliable one cycle after the access is started (at that time
        // signal TxEn is not active)
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxStatus <= 4'h0;
          else
          if(TxEn & TxEn_q & TxBDRead)
            TxStatus <= ram_do[14:11];
        end



        //Latching length from the buffer descriptor;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxLength <= 16'h0;
          else
          if(TxEn & TxEn_q & TxBDRead)
            TxLength <= ram_do[31:16];
          else
          if(MasterWbTX & m_wb_ack_i)
            begin
              if(TxLengthLt4)
                TxLength <= 16'h0;
              else if(TxPointerLSB_rst==2'h0)
                TxLength <= TxLength - 16'd4;    // Length is subtracted at
                                                // the data request
              else if(TxPointerLSB_rst==2'h1)
                TxLength <= TxLength - 16'd3;    // Length is subtracted
                                                 // at the data request
              else if(TxPointerLSB_rst==2'h2)
                TxLength <= TxLength - 16'd2;    // Length is subtracted
                                                 // at the data request
              else if(TxPointerLSB_rst==2'h3)
                TxLength <= TxLength - 16'd1;    // Length is subtracted
                                                 // at the data request
            end
        end

        //Latching length from the buffer descriptor;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            LatchedTxLength <= 16'h0;
          else
          if(TxEn & TxEn_q & TxBDRead)
            LatchedTxLength <= ram_do[31:16];
        end

        assign TxLengthEq0 = TxLength == 0;
        assign TxLengthLt4 = TxLength < 4;


        // Latching Tx buffer pointer from buffer descriptor. Only 30 MSB bits are
        // latched because TxPointerMSB is only used for word-aligned accesses.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxPointerMSB <= 30'h0;
          else
          if(TxEn & TxEn_q & TxPointerRead)
            TxPointerMSB <= ram_do[31:2];
          else
          if(IncrTxPointer & ~BlockingIncrementTxPointer)
              // TxPointer is word-aligned
            TxPointerMSB <= TxPointerMSB + 1'b1;
        end


        // Latching 2 MSB bits of the buffer descriptor. Since word accesses are
        // performed, valid data does not necesserly start at byte 0 (could be byte
        // 0, 1, 2 or 3). This signals are used for proper selection of the start
        // byte (TxData and TxByteCnt) are set by this two bits.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxPointerLSB[1:0] <= 0;
          else
          if(TxEn & TxEn_q & TxPointerRead)
            TxPointerLSB[1:0] <= ram_do[1:0];
        end


        // Latching 2 MSB bits of the buffer descriptor. 
        // After the read access, TxLength needs to be decremented for the number of
        // the valid bytes (1 to 4 bytes are valid in the first word). After the
        // first read all bytes are valid so this two bits are reset to zero. 
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxPointerLSB_rst[1:0] <= 0;
          else
          if(TxEn & TxEn_q & TxPointerRead)
            TxPointerLSB_rst[1:0] <= ram_do[1:0];
          else
        // After first access pointer is word alligned
          if(MasterWbTX & m_wb_ack_i)
            TxPointerLSB_rst[1:0] <= 0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            BlockingIncrementTxPointer <= 0;
          else
          if(MasterAccessFinished)
            BlockingIncrementTxPointer <= 0;
          else
          if(IncrTxPointer)
            BlockingIncrementTxPointer <= 1'b1;
        end


        assign SetReadTxDataFromMemory = TxEn & TxEn_q & TxPointerRead;

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromMemory <= 1'b0;
          else
          if(TxLengthEq0 | TxAbortPulse | TxRetryPulse)
            ReadTxDataFromMemory <= 1'b0;
          else
          if(SetReadTxDataFromMemory)
            ReadTxDataFromMemory <= 1'b1;
        end

        assign ReadTxDataFromMemory_2 = ReadTxDataFromMemory &
                                        ~BlockReadTxDataFromMemory;

        assign tx_burst = ReadTxDataFromMemory_2 & tx_burst_en;

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            BlockReadTxDataFromMemory <= 1'b0;
          else
          if((TxBufferAlmostFull | TxLength <= 4) & MasterWbTX & (~cyc_cleared) &
             (!(TxAbortPacket_NotCleared | TxRetryPacket_NotCleared)))
            BlockReadTxDataFromMemory <= 1'b1;
          else
          if(ReadTxDataFromFifo_wb | TxDonePacket | TxAbortPacket | TxRetryPacket)
            BlockReadTxDataFromMemory <= 1'b0;
        end


        assign MasterAccessFinished = m_wb_ack_i | m_wb_err_i;

        // Enabling master wishbone access to the memory for two devices TX and RX.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            begin
              MasterWbTX <= 1'b0;
              MasterWbRX <= 1'b0;
              m_wb_adr_o <= 30'h0;
              m_wb_cyc_o <= 1'b0;
              m_wb_we_o  <= 1'b0;
              m_wb_sel_o <= 4'h0;
              cyc_cleared<= 1'b0;
              tx_burst_cnt<= 0;
              rx_burst_cnt<= 0;
              IncrTxPointer<= 1'b0;
              tx_burst_en<= 1'b1;
              rx_burst_en<= 1'b0;
              m_wb_cti_o <= 3'b0;
            end
          else
            begin
              // Switching between two stages depends on enable signals
              casez ({MasterWbTX,
                     MasterWbRX,
                     ReadTxDataFromMemory_2,
                     WriteRxDataToMemory,
                     MasterAccessFinished,
                     cyc_cleared,
                     tx_burst,
                     rx_burst})  // synopsys parallel_case

                8'b00_10_00_10, // Idle and MRB needed
                8'b10_1?_10_1?, // MRB continues
                8'b10_10_01_10, // Clear (previously MR) and MRB needed
                8'b01_1?_01_1?: // Clear (previously MW) and MRB needed
                  begin
                    MasterWbTX <= 1'b1;  // tx burst
                    MasterWbRX <= 1'b0;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b0;
                    m_wb_sel_o <= 4'hf;
                    cyc_cleared<= 1'b0;
                    IncrTxPointer<= 1'b1;
                    tx_burst_cnt <= tx_burst_cnt+3'h1;
                    if(tx_burst_cnt==0)
                      m_wb_adr_o <= TxPointerMSB;
                    else
                      m_wb_adr_o <= m_wb_adr_o + 1'b1;
                    if(tx_burst_cnt==(`ETH_BURST_LENGTH-1))
                      begin
                        tx_burst_en<= 1'b0;
                        m_wb_cti_o <= 3'b111;
                      end
                    else
                      begin
                        m_wb_cti_o <= 3'b010;
                      end
                  end
                8'b00_?1_00_?1,             // Idle and MWB needed
                8'b01_?1_10_?1,             // MWB continues
                8'b01_01_01_01,             // Clear (previously MW) and MWB needed
                8'b10_?1_01_?1 :            // Clear (previously MR) and MWB needed
                  begin
                    MasterWbTX <= 1'b0;  // rx burst
                    MasterWbRX <= 1'b1;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b1;
                    m_wb_sel_o <= RxByteSel;
                    IncrTxPointer<= 1'b0;
                    cyc_cleared<= 1'b0;
                    rx_burst_cnt <= rx_burst_cnt+3'h1;

                    if(rx_burst_cnt==0)
                      m_wb_adr_o <= RxPointerMSB;
                    else
                      m_wb_adr_o <= m_wb_adr_o+1'b1;

                    if(rx_burst_cnt==(`ETH_BURST_LENGTH-1))
                      begin
                        rx_burst_en<= 1'b0;
                        m_wb_cti_o <= 3'b111;
                      end
                    else
                      begin
                        m_wb_cti_o <= 3'b010;
                      end
                  end
                8'b00_?1_00_?0 :// idle and MW is needed (data write to rx buffer)
                  begin
                    MasterWbTX <= 1'b0;
                    MasterWbRX <= 1'b1;
                    m_wb_adr_o <= RxPointerMSB;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b1;
                    m_wb_sel_o <= RxByteSel;
                    IncrTxPointer<= 1'b0;
                  end
                8'b00_10_00_00 : // idle and MR is needed (data read from tx buffer)
                  begin
                    MasterWbTX <= 1'b1;
                    MasterWbRX <= 1'b0;
                    m_wb_adr_o <= TxPointerMSB;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b0;
                    m_wb_sel_o <= 4'hf;
                    IncrTxPointer<= 1'b1;
                  end
                8'b10_10_01_00,// MR and MR is needed (data read from tx buffer)
                8'b01_1?_01_0?  :// MW and MR is needed (data read from tx buffer)
                  begin
                    MasterWbTX <= 1'b1;
                    MasterWbRX <= 1'b0;
                    m_wb_adr_o <= TxPointerMSB;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b0;
                    m_wb_sel_o <= 4'hf;
                    cyc_cleared<= 1'b0;
                    IncrTxPointer<= 1'b1;
                  end
                8'b01_01_01_00,// MW and MW needed (data write to rx buffer)
                8'b10_?1_01_?0 :// MR and MW is needed (data write to rx buffer)
                  begin
                    MasterWbTX <= 1'b0;
                    MasterWbRX <= 1'b1;
                    m_wb_adr_o <= RxPointerMSB;
                    m_wb_cyc_o <= 1'b1;
                    m_wb_we_o  <= 1'b1;
                    m_wb_sel_o <= RxByteSel;
                    cyc_cleared<= 1'b0;
                    IncrTxPointer<= 1'b0;
                  end
                8'b01_01_10_00,// MW and MW needed (cycle is cleared between
                              // previous and next access)
                8'b01_1?_10_?0,// MW and MW or MR or MRB needed (cycle is
                            // cleared between previous and next access)
                8'b10_10_10_00,// MR and MR needed (cycle is cleared between
                               // previous and next access)
                8'b10_?1_10_0? :// MR and MR or MW or MWB (cycle is cleared
                               // between previous and next access)
                  begin
                    m_wb_cyc_o <= 1'b0;// whatever and master read or write is
                                       // needed. We need to clear m_wb_cyc_o
                                       // before next access is started
                    cyc_cleared<= 1'b1;
                    IncrTxPointer<= 1'b0;
                    tx_burst_cnt<= 0;
                    tx_burst_en<= txfifo_cnt<(TX_FIFO_DEPTH-`ETH_BURST_LENGTH) & (TxLength>(`ETH_BURST_LENGTH*4+4));
                    rx_burst_cnt<= 0;
                    rx_burst_en<= MasterWbRX ? enough_data_in_rxfifo_for_burst_plus1 : enough_data_in_rxfifo_for_burst;  // Counter is not decremented, yet, so plus1 is used.
                      m_wb_cti_o <= 3'b0;
                  end
                8'b??_00_10_00,// whatever and no master read or write is needed
                               // (ack or err comes finishing previous access)
                8'b??_00_01_00 : // Between cyc_cleared request was cleared
                  begin
                    MasterWbTX <= 1'b0;
                    MasterWbRX <= 1'b0;
                    m_wb_cyc_o <= 1'b0;
                    cyc_cleared<= 1'b0;
                    IncrTxPointer<= 1'b0;
                    rx_burst_cnt<= 0;
                    // Counter is not decremented, yet, so plus1 is used.
                    rx_burst_en<= MasterWbRX ? enough_data_in_rxfifo_for_burst_plus1 :
                                               enough_data_in_rxfifo_for_burst;
                    m_wb_cti_o <= 3'b0;
                  end
                8'b00_00_00_00:  // whatever and no master read or write is needed
                                 // (ack or err comes finishing previous access)
                  begin
                    tx_burst_cnt<= 0;
                    tx_burst_en<= txfifo_cnt<(TX_FIFO_DEPTH-`ETH_BURST_LENGTH) & (TxLength>(`ETH_BURST_LENGTH*4+4));
                  end
                default:                    // Don't touch
                  begin
                    MasterWbTX <= MasterWbTX;
                    MasterWbRX <= MasterWbRX;
                    m_wb_cyc_o <= m_wb_cyc_o;
                    m_wb_sel_o <= m_wb_sel_o;
                    IncrTxPointer<= IncrTxPointer;
                  end
              endcase
            end
        end

        assign TxFifoClear = (TxAbortPacket | TxRetryPacket);

        eth_fifo
             #(
               .DATA_WIDTH(TX_FIFO_DATA_WIDTH),
               .DEPTH(TX_FIFO_DEPTH),
               .CNT_WIDTH(TX_FIFO_CNT_WIDTH))
        tx_fifo (
               .data_in(m_wb_dat_i),
               .data_out(TxData_wb),
               .clk(WB_CLK_I),
               .reset(Reset),
               .write(MasterWbTX & m_wb_ack_i),
               .read(ReadTxDataFromFifo_wb & ~TxBufferEmpty),
               .clear(TxFifoClear),
               .full(TxBufferFull),
               .almost_full(TxBufferAlmostFull),
               .almost_empty(TxBufferAlmostEmpty),
               .empty(TxBufferEmpty),
               .cnt(txfifo_cnt)
               );

        // Start: Generation of the TxStartFrm_wb which is then synchronized to the
        // MTxClk
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxStartFrm_wb <= 1'b0;
          else
          if(TxBDReady & ~StartOccured & (TxBufferFull | TxLengthEq0))
            TxStartFrm_wb <= 1'b1;
          else
          if(TxStartFrm_syncb2)
            TxStartFrm_wb <= 1'b0;
        end

        // StartOccured: TxStartFrm_wb occurs only ones at the beginning. Then it's
        // blocked.
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            StartOccured <= 1'b0;
          else
          if(TxStartFrm_wb)
            StartOccured <= 1'b1;
          else
          if(ResetTxBDReady)
            StartOccured <= 1'b0;
        end

        // Synchronizing TxStartFrm_wb to MTxClk
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxStartFrm_sync1 <= 1'b0;
          else
            TxStartFrm_sync1 <= TxStartFrm_wb;
        end

        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxStartFrm_sync2 <= 1'b0;
          else
            TxStartFrm_sync2 <= TxStartFrm_sync1;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxStartFrm_syncb1 <= 1'b0;
          else
            TxStartFrm_syncb1 <= TxStartFrm_sync2;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxStartFrm_syncb2 <= 1'b0;
          else
            TxStartFrm_syncb2 <= TxStartFrm_syncb1;
        end

        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxStartFrm <= 1'b0;
          else
          if(TxStartFrm_sync2)
            TxStartFrm <= 1'b1;
          else
          if(TxUsedData_q | ~TxStartFrm_sync2 &
             (TxRetry & (~TxRetry_q) | TxAbort & (~TxAbort_q)))
            TxStartFrm <= 1'b0;
        end
        // End: Generation of the TxStartFrm_wb which is then synchronized to the
        // MTxClk


        // TxEndFrm_wb: indicator of the end of frame
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxEndFrm_wb <= 1'b0;
          else
          if(TxLengthEq0 & TxBufferAlmostEmpty & TxUsedData)
            TxEndFrm_wb <= 1'b1;
          else
          if(TxRetryPulse | TxDonePulse | TxAbortPulse)
            TxEndFrm_wb <= 1'b0;
        end

        // Marks which bytes are valid within the word.
        assign TxValidBytes = TxLengthLt4 ? TxLength[1:0] : 2'b0;


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            LatchValidBytes <= 1'b0;
          else
          if(TxLengthLt4 & TxBDReady)
            LatchValidBytes <= 1'b1;
          else
            LatchValidBytes <= 1'b0;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            LatchValidBytes_q <= 1'b0;
          else
            LatchValidBytes_q <= LatchValidBytes;
        end


        // Latching valid bytes
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxValidBytesLatched <= 2'h0;
          else
          if(LatchValidBytes & ~LatchValidBytes_q)
            TxValidBytesLatched <= TxValidBytes;
          else
          if(TxRetryPulse | TxDonePulse | TxAbortPulse)
            TxValidBytesLatched <= 2'h0;
        end


        assign TxIRQEn          = TxStatus[14];
        assign WrapTxStatusBit  = TxStatus[13];
        assign PerPacketPad     = TxStatus[12];
        assign PerPacketCrcEn   = TxStatus[11];


        assign RxIRQEn         = RxStatus[14];
        assign WrapRxStatusBit = RxStatus[13];


        // Temporary Tx and Rx buffer descriptor address
        assign TempTxBDAddress[7:1] = {7{ TxStatusWrite  & ~WrapTxStatusBit}} &
                                      (TxBDAddress + 1'b1); // Tx BD increment or wrap
                                                            // (last BD)

        assign TempRxBDAddress[7:1] =
          {7{ WrapRxStatusBit}} & (r_TxBDNum[6:0]) | // Using first Rx BD
          {7{~WrapRxStatusBit}} & (RxBDAddress + 1'b1); // Using next Rx BD
                                                        // (increment address)

        // Latching Tx buffer descriptor address
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxBDAddress <= 7'h0;
          else if (r_TxEn & (~r_TxEn_q))
            TxBDAddress <= 7'h0;
          else if (TxStatusWrite)
            TxBDAddress <= TempTxBDAddress;
        end

        // Latching Rx buffer descriptor address
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxBDAddress <= 7'h0;
          else if(r_RxEn & (~r_RxEn_q))
            RxBDAddress <= r_TxBDNum[6:0];
          else if(RxStatusWrite)
            RxBDAddress <= TempRxBDAddress;
        end

        wire [8:0] TxStatusInLatched = {TxUnderRun, RetryCntLatched[3:0],
                                        RetryLimit, LateCollLatched, DeferLatched,
                                        CarrierSenseLost};

        assign RxBDDataIn = {LatchedRxLength, 1'b0, RxStatus, 4'h0, RxStatusInLatched};
        assign TxBDDataIn = {LatchedTxLength, 1'b0, TxStatus, 2'h0, TxStatusInLatched};


        // Signals used for various purposes
        assign TxRetryPulse   = TxRetry_wb   & ~TxRetry_wb_q;
        assign TxDonePulse    = TxDone_wb    & ~TxDone_wb_q;
        assign TxAbortPulse   = TxAbort_wb   & ~TxAbort_wb_q;


        // Generating delayed signals
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            begin
              TxAbort_q      <= 1'b0;
              TxRetry_q      <= 1'b0;
              TxUsedData_q   <= 1'b0;
            end
          else
            begin
              TxAbort_q      <= TxAbort;
              TxRetry_q      <= TxRetry;
              TxUsedData_q   <= TxUsedData;
            end
        end

        // Generating delayed signals
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            begin
              TxDone_wb_q   <= 1'b0;
              TxAbort_wb_q  <= 1'b0;
              TxRetry_wb_q  <= 1'b0;
            end
          else
            begin
              TxDone_wb_q   <= TxDone_wb;
              TxAbort_wb_q  <= TxAbort_wb;
              TxRetry_wb_q  <= TxRetry_wb;
            end
        end


        reg TxAbortPacketBlocked;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxAbortPacket <= 1'b0;
          else
          if(TxAbort_wb & (~tx_burst_en) & MasterWbTX & MasterAccessFinished &
            (~TxAbortPacketBlocked) | TxAbort_wb & (~MasterWbTX) &
            (~TxAbortPacketBlocked))
            TxAbortPacket <= 1'b1;
          else
            TxAbortPacket <= 1'b0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxAbortPacket_NotCleared <= 1'b0;
          else
          if(TxEn & TxEn_q & TxAbortPacket_NotCleared)
            TxAbortPacket_NotCleared <= 1'b0;
          else
          if(TxAbort_wb & (~tx_burst_en) & MasterWbTX & MasterAccessFinished &
             (~TxAbortPacketBlocked) | TxAbort_wb & (~MasterWbTX) &
             (~TxAbortPacketBlocked))
            TxAbortPacket_NotCleared <= 1'b1;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxAbortPacketBlocked <= 1'b0;
          else
          if(!TxAbort_wb & TxAbort_wb_q)
            TxAbortPacketBlocked <= 1'b0;
          else
          if(TxAbortPacket)
            TxAbortPacketBlocked <= 1'b1;
        end


        reg TxRetryPacketBlocked;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxRetryPacket <= 1'b0;
          else
          if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished &
             !TxRetryPacketBlocked | TxRetry_wb & !MasterWbTX & !TxRetryPacketBlocked)
            TxRetryPacket <= 1'b1;
          else
            TxRetryPacket <= 1'b0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxRetryPacket_NotCleared <= 1'b0;
          else
          if(StartTxBDRead)
            TxRetryPacket_NotCleared <= 1'b0;
          else
          if(TxRetry_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished &
             !TxRetryPacketBlocked | TxRetry_wb & !MasterWbTX & !TxRetryPacketBlocked)
            TxRetryPacket_NotCleared <= 1'b1;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxRetryPacketBlocked <= 1'b0;
          else
          if(!TxRetry_wb & TxRetry_wb_q)
            TxRetryPacketBlocked <= 1'b0;
          else
          if(TxRetryPacket)
            TxRetryPacketBlocked <= 1'b1;
        end


        reg TxDonePacketBlocked;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxDonePacket <= 1'b0;
          else
          if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished &
             !TxDonePacketBlocked | TxDone_wb & !MasterWbTX & !TxDonePacketBlocked)
            TxDonePacket <= 1'b1;
          else
            TxDonePacket <= 1'b0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxDonePacket_NotCleared <= 1'b0;
          else
          if(TxEn & TxEn_q & TxDonePacket_NotCleared)
            TxDonePacket_NotCleared <= 1'b0;
          else
          if(TxDone_wb & !tx_burst_en & MasterWbTX & MasterAccessFinished &
             (~TxDonePacketBlocked) | TxDone_wb & !MasterWbTX & (~TxDonePacketBlocked))
            TxDonePacket_NotCleared <= 1'b1;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxDonePacketBlocked <= 1'b0;
          else
          if(!TxDone_wb & TxDone_wb_q)
            TxDonePacketBlocked <= 1'b0;
          else
          if(TxDonePacket)
            TxDonePacketBlocked <= 1'b1;
        end


        // Indication of the last word
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            LastWord <= 1'b0;
          else
          if((TxEndFrm | TxAbort | TxRetry) & Flop)
            LastWord <= 1'b0;
          else
          if(TxUsedData & Flop & TxByteCnt == 2'h3)
            LastWord <= TxEndFrm_wb;
        end


        // Tx end frame generation
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxEndFrm <= 1'b0;
          else
          if(Flop & TxEndFrm | TxAbort | TxRetry_q)
            TxEndFrm <= 1'b0;
          else
          if(Flop & LastWord)
            begin
              case (TxValidBytesLatched)  // synopsys parallel_case
                1 : TxEndFrm <= TxByteCnt == 2'h0;
                2 : TxEndFrm <= TxByteCnt == 2'h1;
                3 : TxEndFrm <= TxByteCnt == 2'h2;
                0 : TxEndFrm <= TxByteCnt == 2'h3;
                default : TxEndFrm <= 1'b0;
              endcase
            end
        end


        // Tx data selection (latching)
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxData <= 0;
          else
          if(TxStartFrm_sync2 & ~TxStartFrm)
            case(TxPointerLSB)  // synopsys parallel_case
              2'h0 : TxData <= TxData_wb[31:24];// Big Endian Byte Ordering
              2'h1 : TxData <= TxData_wb[23:16];// Big Endian Byte Ordering
              2'h2 : TxData <= TxData_wb[15:08];// Big Endian Byte Ordering
              2'h3 : TxData <= TxData_wb[07:00];// Big Endian Byte Ordering
            endcase
          else
          if(TxStartFrm & TxUsedData & TxPointerLSB==2'h3)
            TxData <= TxData_wb[31:24];// Big Endian Byte Ordering
          else
          if(TxUsedData & Flop)
            begin
              case(TxByteCnt)  // synopsys parallel_case
                0 : TxData <= TxDataLatched[31:24];// Big Endian Byte Ordering
                1 : TxData <= TxDataLatched[23:16];
                2 : TxData <= TxDataLatched[15:8];
                3 : TxData <= TxDataLatched[7:0];
              endcase
            end
        end


        // Latching tx data
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxDataLatched[31:0] <= 32'h0;
          else
          if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 |
             TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
            TxDataLatched[31:0] <= TxData_wb[31:0];
        end


        // Tx under run
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxUnderRun_wb <= 1'b0;
          else
          if(TxAbortPulse)
            TxUnderRun_wb <= 1'b0;
          else
          if(TxBufferEmpty & ReadTxDataFromFifo_wb)
            TxUnderRun_wb <= 1'b1;
        end


        reg TxUnderRun_sync1;

        // Tx under run
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxUnderRun_sync1 <= 1'b0;
          else
          if(TxUnderRun_wb)
            TxUnderRun_sync1 <= 1'b1;
          else
          if(BlockingTxStatusWrite_sync2)
            TxUnderRun_sync1 <= 1'b0;
        end

        // Tx under run
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxUnderRun <= 1'b0;
          else
          if(BlockingTxStatusWrite_sync2)
            TxUnderRun <= 1'b0;
          else
          if(TxUnderRun_sync1)
            TxUnderRun <= 1'b1;
        end


        // Tx Byte counter
        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            TxByteCnt <= 2'h0;
          else
          if(TxAbort_q | TxRetry_q)
            TxByteCnt <= 2'h0;
          else
          if(TxStartFrm & ~TxUsedData)
            case(TxPointerLSB)  // synopsys parallel_case
              2'h0 : TxByteCnt <= 2'h1;
              2'h1 : TxByteCnt <= 2'h2;
              2'h2 : TxByteCnt <= 2'h3;
              2'h3 : TxByteCnt <= 2'h0;
            endcase
          else
          if(TxUsedData & Flop)
            TxByteCnt <= TxByteCnt + 1'b1;
        end


        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_tck <= 1'b0;
          else
          if(TxStartFrm_sync2 & ~TxStartFrm | TxUsedData & Flop & TxByteCnt == 2'h3 &
             ~LastWord | TxStartFrm & TxUsedData & Flop & TxByteCnt == 2'h0)
             ReadTxDataFromFifo_tck <= 1'b1;
          else
          if(ReadTxDataFromFifo_syncb2 & ~ReadTxDataFromFifo_syncb3)
            ReadTxDataFromFifo_tck <= 1'b0;
        end

        // Synchronizing TxStartFrm_wb to MTxClk
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_sync1 <= 1'b0;
          else
            ReadTxDataFromFifo_sync1 <= ReadTxDataFromFifo_tck;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_sync2 <= 1'b0;
          else
            ReadTxDataFromFifo_sync2 <= ReadTxDataFromFifo_sync1;
        end

        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_syncb1 <= 1'b0;
          else
            ReadTxDataFromFifo_syncb1 <= ReadTxDataFromFifo_sync2;
        end

        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_syncb2 <= 1'b0;
          else
            ReadTxDataFromFifo_syncb2 <= ReadTxDataFromFifo_syncb1;
        end

        always @ (posedge MTxClk or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_syncb3 <= 1'b0;
          else
            ReadTxDataFromFifo_syncb3 <= ReadTxDataFromFifo_syncb2;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ReadTxDataFromFifo_sync3 <= 1'b0;
          else
            ReadTxDataFromFifo_sync3 <= ReadTxDataFromFifo_sync2;
        end

        assign ReadTxDataFromFifo_wb = ReadTxDataFromFifo_sync2 &
                                       ~ReadTxDataFromFifo_sync3;
        // End: Generation of the ReadTxDataFromFifo_tck signal and synchronization
        // to the WB_CLK_I


        // Synchronizing TxRetry signal (synchronized to WISHBONE clock)
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxRetrySync1 <= 1'b0;
          else
            TxRetrySync1 <= TxRetry;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxRetry_wb <= 1'b0;
          else
            TxRetry_wb <= TxRetrySync1;
        end


        // Synchronized TxDone_wb signal (synchronized to WISHBONE clock)
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxDoneSync1 <= 1'b0;
          else
            TxDoneSync1 <= TxDone;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxDone_wb <= 1'b0;
          else
            TxDone_wb <= TxDoneSync1;
        end

        // Synchronizing TxAbort signal (synchronized to WISHBONE clock)
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxAbortSync1 <= 1'b0;
          else
            TxAbortSync1 <= TxAbort;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxAbort_wb <= 1'b0;
          else
            TxAbort_wb <= TxAbortSync1;
        end


        assign StartRxBDRead = RxStatusWrite | RxAbortSync3 & ~RxAbortSync4 |
                               r_RxEn & ~r_RxEn_q;

        // Reading the Rx buffer descriptor
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxBDRead <= 1'b0;
          else
          if(StartRxBDRead & ~RxReady)
            RxBDRead <= 1'b1;
          else
          if(RxBDReady)
            RxBDRead <=
            1'b0;
        end


        
          // Reading of the next receive buffer descriptor starts after reception status
        
          // is written to the previous one.

        // Latching READY status of the Rx buffer descriptor
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxBDReady <= 1'b0;
          else
          if(RxPointerRead)
            RxBDReady <= 1'b0;
          else
          if(RxEn &
          RxEn_q & RxBDRead)
            RxBDReady <=
            ram_do[15];// RxBDReady is sampled only once at the beginning
        end

        // Latching Rx buffer descriptor status
        // Data is avaliable one cycle after the access is started (at that time
        // signal RxEn is not active)
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxStatus <= 2'h0;
          else
          if(RxEn & RxEn_q & RxBDRead)
            RxStatus <= ram_do[14:13];
        end


        // RxReady generation
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxReady <= 1'b0;
          else if(ShiftEnded | RxAbortSync2 & ~RxAbortSync3 | ~r_RxEn & r_RxEn_q)
            RxReady <= 1'b0;
          else if(RxEn & RxEn_q & RxPointerRead)
            RxReady <= 1'b1;
        end


        // Reading Rx BD pointer
        assign StartRxPointerRead = RxBDRead & RxBDReady;

        // Reading Tx BD Pointer
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxPointerRead <= 1'b0;
          else
          if(StartRxPointerRead)
            RxPointerRead <= 1'b1;
          else
          if(RxEn & RxEn_q)
            RxPointerRead <= 1'b0;
        end


        //Latching Rx buffer pointer from buffer descriptor;
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxPointerMSB <= 30'h0;
          else
          if(RxEn & RxEn_q & RxPointerRead)
            RxPointerMSB <= ram_do[31:2];
          else
          if(MasterWbRX & m_wb_ack_i)
              RxPointerMSB <= RxPointerMSB + 1'b1; // Word access (always word access.
                                                   // m_wb_sel_o are used for
                                                   // selecting bytes)
        end


        //Latching last addresses from buffer descriptor (used as byte-half-word
        //indicator);
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxPointerLSB_rst[1:0] <= 0;
          else
          if(MasterWbRX & m_wb_ack_i) // After first write all RxByteSel are active
            RxPointerLSB_rst[1:0] <= 0;
          else
          if(RxEn & RxEn_q & RxPointerRead)
            RxPointerLSB_rst[1:0] <= ram_do[1:0];
        end


        always @ (RxPointerLSB_rst)
        begin
          case(RxPointerLSB_rst[1:0])  // synopsys parallel_case
            2'h0 : RxByteSel[3:0] = 4'hf;
            2'h1 : RxByteSel[3:0] = 4'h7;
            2'h2 : RxByteSel[3:0] = 4'h3;
            2'h3 : RxByteSel[3:0] = 4'h1;
          endcase
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxEn_needed <= 1'b0;
          else if(~RxReady & r_RxEn & WbEn & ~WbEn_q)
            RxEn_needed <= 1'b1;
          else if(RxPointerRead & RxEn & RxEn_q)
            RxEn_needed <= 1'b0;
        end


        // Reception status is written back to the buffer descriptor after the end
        // of frame is detected.
        assign RxStatusWrite = ShiftEnded & RxEn & RxEn_q;


        // Indicating that last byte is being reveived
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            LastByteIn <= 1'b0;
          else
          if(ShiftWillEnd & (&RxByteCnt) | RxAbort)
            LastByteIn <= 1'b0;
          else
          if(RxValid & RxReady & RxEndFrm & ~(&RxByteCnt) & RxEnableWindow)
            LastByteIn <= 1'b1;
        end

        assign StartShiftWillEnd = LastByteIn  | RxValid & RxEndFrm & (&RxByteCnt) &
                                   RxEnableWindow;

        // Indicating that data reception will end
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            ShiftWillEnd <= 1'b0;
          else
          if(ShiftEnded_rck | RxAbort)
            ShiftWillEnd <= 1'b0;
          else
          if(StartShiftWillEnd)
            ShiftWillEnd <= 1'b1;
        end


        // Receive byte counter
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxByteCnt <= 2'h0;
          else
          if(ShiftEnded_rck | RxAbort)
            RxByteCnt <= 2'h0;
          else
          if(RxValid & RxStartFrm & RxReady)
            case(RxPointerLSB_rst)  // synopsys parallel_case
              2'h0 : RxByteCnt <= 2'h1;
              2'h1 : RxByteCnt <= 2'h2;
              2'h2 : RxByteCnt <= 2'h3;
              2'h3 : RxByteCnt <= 2'h0;
            endcase
          else
          if(RxValid & RxEnableWindow & RxReady | LastByteIn)
            RxByteCnt <= RxByteCnt + 1'b1;
        end


        // Indicates how many bytes are valid within the last word
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxValidBytes <= 2'h1;
          else
          if(RxValid & RxStartFrm)
            case(RxPointerLSB_rst)  // synopsys parallel_case
              2'h0 : RxValidBytes <= 2'h1;
              2'h1 : RxValidBytes <= 2'h2;
              2'h2 : RxValidBytes <= 2'h3;
              2'h3 : RxValidBytes <= 2'h0;
            endcase
          else
          if(RxValid & ~LastByteIn & ~RxStartFrm & RxEnableWindow)
            RxValidBytes <= RxValidBytes + 1'b1;
        end


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxDataLatched1       <= 24'h0;
          else
          if(RxValid & RxReady & ~LastByteIn)
            if(RxStartFrm)
            begin
              case(RxPointerLSB_rst)     // synopsys parallel_case
                // Big Endian Byte Ordering
                2'h0:        RxDataLatched1[31:24] <= RxData;
                2'h1:        RxDataLatched1[23:16] <= RxData;
                2'h2:        RxDataLatched1[15:8]  <= RxData;
                2'h3:        RxDataLatched1        <= RxDataLatched1;
              endcase
            end
            else if (RxEnableWindow)
            begin
              case(RxByteCnt)     // synopsys parallel_case
                // Big Endian Byte Ordering
                2'h0:        RxDataLatched1[31:24] <= RxData;
                2'h1:        RxDataLatched1[23:16] <= RxData;
                2'h2:        RxDataLatched1[15:8]  <= RxData;
                2'h3:        RxDataLatched1        <= RxDataLatched1;
              endcase
            end
        end

        // Assembling data that will be written to the rx_fifo
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxDataLatched2 <= 32'h0;
          else
          if(SetWriteRxDataToFifo & ~ShiftWillEnd)
            // Big Endian Byte Ordering
            RxDataLatched2 <= {RxDataLatched1[31:8], RxData};
          else
          if(SetWriteRxDataToFifo & ShiftWillEnd)
            case(RxValidBytes)  // synopsys parallel_case
              // Big Endian Byte Ordering
              0 : RxDataLatched2 <= {RxDataLatched1[31:8],  RxData};
              1 : RxDataLatched2 <= {RxDataLatched1[31:24], 24'h0};
              2 : RxDataLatched2 <= {RxDataLatched1[31:16], 16'h0};
              3 : RxDataLatched2 <= {RxDataLatched1[31:8],   8'h0};
            endcase
        end


        // Indicating start of the reception process
        assign SetWriteRxDataToFifo = (RxValid & RxReady & ~RxStartFrm &
                                      RxEnableWindow & (&RxByteCnt))
                                      |(RxValid & RxReady &  RxStartFrm &
                                      (&RxPointerLSB_rst))
                                      |(ShiftWillEnd & LastByteIn & (&RxByteCnt));

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            WriteRxDataToFifo <= 1'b0;
          else
          if(SetWriteRxDataToFifo & ~RxAbort)
            WriteRxDataToFifo <= 1'b1;
          else
          if(WriteRxDataToFifoSync2 | RxAbort)
            WriteRxDataToFifo <= 1'b0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            WriteRxDataToFifoSync1 <= 1'b0;
          else
          if(WriteRxDataToFifo)
            WriteRxDataToFifoSync1 <= 1'b1;
          else
            WriteRxDataToFifoSync1 <= 1'b0;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            WriteRxDataToFifoSync2 <= 1'b0;
          else
            WriteRxDataToFifoSync2 <= WriteRxDataToFifoSync1;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            WriteRxDataToFifoSync3 <= 1'b0;
          else
            WriteRxDataToFifoSync3 <= WriteRxDataToFifoSync2;
        end


        assign WriteRxDataToFifo_wb = WriteRxDataToFifoSync2 &
                                      ~WriteRxDataToFifoSync3;


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            LatchedRxStartFrm <= 0;
          else
          if(RxStartFrm & ~SyncRxStartFrm_q)
            LatchedRxStartFrm <= 1;
          else
          if(SyncRxStartFrm_q)
            LatchedRxStartFrm <= 0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            SyncRxStartFrm <= 0;
          else
          if(LatchedRxStartFrm)
            SyncRxStartFrm <= 1;
          else
            SyncRxStartFrm <= 0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            SyncRxStartFrm_q <= 0;
          else
            SyncRxStartFrm_q <= SyncRxStartFrm;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            SyncRxStartFrm_q2 <= 0;
          else
            SyncRxStartFrm_q2 <= SyncRxStartFrm_q;
        end


        assign RxFifoReset = SyncRxStartFrm_q & ~SyncRxStartFrm_q2;

        eth_fifo #(
                   .DATA_WIDTH(RX_FIFO_DATA_WIDTH),
                   .DEPTH(RX_FIFO_DEPTH),
                   .CNT_WIDTH(RX_FIFO_CNT_WIDTH))
        rx_fifo (
                 .clk            (WB_CLK_I),
                 .reset          (Reset),
                 // Inputs
                 .data_in        (RxDataLatched2),
                 .write          (WriteRxDataToFifo_wb & ~RxBufferFull),
                 .read           (MasterWbRX & m_wb_ack_i),
                 .clear          (RxFifoReset),
                 // Outputs
                 .data_out       (m_wb_dat_o),
                 .full           (RxBufferFull),
                 .almost_full    (),
                 .almost_empty   (RxBufferAlmostEmpty),
                 .empty          (RxBufferEmpty),
                 .cnt            (rxfifo_cnt)
                );

        assign enough_data_in_rxfifo_for_burst = rxfifo_cnt>=`ETH_BURST_LENGTH;
        assign enough_data_in_rxfifo_for_burst_plus1 = rxfifo_cnt>`ETH_BURST_LENGTH;
        assign WriteRxDataToMemory = ~RxBufferEmpty;
        assign rx_burst = rx_burst_en & WriteRxDataToMemory;


        // Generation of the end-of-frame signal
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            ShiftEnded_rck <= 1'b0;
          else
          if(~RxAbort & SetWriteRxDataToFifo & StartShiftWillEnd)
            ShiftEnded_rck <= 1'b1;
          else
          if(RxAbort | ShiftEndedSync_c1 & ShiftEndedSync_c2)
            ShiftEnded_rck <= 1'b0;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ShiftEndedSync1 <= 1'b0;
          else
            ShiftEndedSync1 <= ShiftEnded_rck;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ShiftEndedSync2 <= 1'b0;
          else
            ShiftEndedSync2 <= ShiftEndedSync1;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ShiftEndedSync3 <= 1'b0;
          else
          if(ShiftEndedSync1 & ~ShiftEndedSync2)
            ShiftEndedSync3 <= 1'b1;
          else
          if(ShiftEnded)
            ShiftEndedSync3 <= 1'b0;
        end

        // Generation of the end-of-frame signal
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            ShiftEnded <= 1'b0;
          else
          if(ShiftEndedSync3 & MasterWbRX & m_wb_ack_i & RxBufferAlmostEmpty & ~ShiftEnded)
            ShiftEnded <= 1'b1;
          else
          if(RxStatusWrite)
            ShiftEnded <= 1'b0;
        end

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            ShiftEndedSync_c1 <= 1'b0;
          else
            ShiftEndedSync_c1 <= ShiftEndedSync2;
        end

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            ShiftEndedSync_c2 <= 1'b0;
          else
            ShiftEndedSync_c2 <= ShiftEndedSync_c1;
        end

        // Generation of the end-of-frame signal
        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxEnableWindow <= 1'b0;
          else if(RxStartFrm)
            RxEnableWindow <= 1'b1;
          else if(RxEndFrm | RxAbort)
            RxEnableWindow <= 1'b0;
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxAbortSync1 <= 1'b0;
          else
            RxAbortSync1 <= RxAbortLatched;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxAbortSync2 <= 1'b0;
          else
            RxAbortSync2 <= RxAbortSync1;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxAbortSync3 <= 1'b0;
          else
            RxAbortSync3 <= RxAbortSync2;
        end

        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxAbortSync4 <= 1'b0;
          else
            RxAbortSync4 <= RxAbortSync3;
        end

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxAbortSyncb1 <= 1'b0;
          else
            RxAbortSyncb1 <= RxAbortSync2;
        end

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxAbortSyncb2 <= 1'b0;
          else
            RxAbortSyncb2 <= RxAbortSyncb1;
        end


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxAbortLatched <= 1'b0;
          else
          if(RxAbortSyncb2)
            RxAbortLatched <= 1'b0;
          else
          if(RxAbort)
            RxAbortLatched <= 1'b1;
        end


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            LatchedRxLength[15:0] <= 16'h0;
          else
          if(LoadRxStatus)
            LatchedRxLength[15:0] <= RxLength[15:0];
        end


        assign RxStatusIn = {ReceivedPauseFrm,
                             AddressMiss,
                             RxOverrun,
                             InvalidSymbol,
                             DribbleNibble,
                             ReceivedPacketTooBig,
                             ShortFrame,
                             LatchedCrcError,
                             RxLateCollision};

        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            RxStatusInLatched <= 'h0;
          else
          if(LoadRxStatus)
            RxStatusInLatched <= RxStatusIn;
        end


        // Rx overrun
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxOverrun <= 1'b0;
          else if(RxStatusWrite)
            RxOverrun <= 1'b0;
          else if(RxBufferFull & WriteRxDataToFifo_wb)
            RxOverrun <= 1'b1;
        end


        assign TxError = TxUnderRun | RetryLimit | LateCollLatched | CarrierSenseLost;


        // ShortFrame (RxStatusInLatched[2]) can not set an error because short frames
        // are aborted when signal r_RecSmall is set to 0 in MODER register. 
        // AddressMiss is identifying that a frame was received because of the
        // promiscous mode and is not an error
        assign RxError = (|RxStatusInLatched[6:3]) | (|RxStatusInLatched[1:0]);


        // Latching and synchronizing RxStatusWrite signal. This signal is used for
        // clearing the ReceivedPauseFrm signal
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxStatusWriteLatched <= 1'b0;
          else
          if(RxStatusWriteLatched_syncb2)
            RxStatusWriteLatched <= 1'b0;
          else
          if(RxStatusWrite)
            RxStatusWriteLatched <= 1'b1;
        end


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            begin
              RxStatusWriteLatched_sync1 <= 1'b0;
              RxStatusWriteLatched_sync2 <= 1'b0;
            end
          else
            begin
              RxStatusWriteLatched_sync1 <= RxStatusWriteLatched;
              RxStatusWriteLatched_sync2 <= RxStatusWriteLatched_sync1;
            end
        end


        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            begin
              RxStatusWriteLatched_syncb1 <= 1'b0;
              RxStatusWriteLatched_syncb2 <= 1'b0;
            end
          else
            begin
              RxStatusWriteLatched_syncb1 <= RxStatusWriteLatched_sync2;
              RxStatusWriteLatched_syncb2 <= RxStatusWriteLatched_syncb1;
            end
        end


        // Tx Done Interrupt
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxB_IRQ <= 1'b0;
          else
          if(TxStatusWrite & TxIRQEn)
            TxB_IRQ <= ~TxError;
          else
            TxB_IRQ <= 1'b0;
        end


        // Tx Error Interrupt
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            TxE_IRQ <= 1'b0;
          else
          if(TxStatusWrite & TxIRQEn)
            TxE_IRQ <= TxError;
          else
            TxE_IRQ <= 1'b0;
        end


        // Rx Done Interrupt
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxB_IRQ <= 1'b0;
          else
          if(RxStatusWrite & RxIRQEn & ReceivedPacketGood &
             (~ReceivedPauseFrm | ReceivedPauseFrm & r_PassAll & (~r_RxFlow)))
            RxB_IRQ <= (~RxError);
          else
            RxB_IRQ <= 1'b0;
        end


        // Rx Error Interrupt
        always @ (posedge WB_CLK_I or posedge Reset)
        begin
          if(Reset)
            RxE_IRQ <= 1'b0;
          else
          if(RxStatusWrite & RxIRQEn & (~ReceivedPauseFrm | ReceivedPauseFrm
             & r_PassAll & (~r_RxFlow)))
            RxE_IRQ <= RxError;
          else
            RxE_IRQ <= 1'b0;
        end


        // Busy Interrupt

        reg Busy_IRQ_rck;
        reg Busy_IRQ_sync1;
        reg Busy_IRQ_sync2;
        reg Busy_IRQ_sync3;
        reg Busy_IRQ_syncb1;
        reg Busy_IRQ_syncb2;


        always @ (posedge MRxClk or posedge Reset)
        begin
          if(Reset)
            Busy_IRQ_rck <= 1'b0;
          else
          if(RxValid & RxStartFrm & ~RxReady)
            Busy_IRQ_rck <= 1'b1;
          else
          if(Busy_IRQ_syncb2)
            Busy_IRQ_rck <= 1'b0;
        end

        always @ (posedge WB_CLK_I)
        begin
            Busy_IRQ_sync1 <= Busy_IRQ_rck;
            Busy_IRQ_sync2 <= Busy_IRQ_sync1;
            Busy_IRQ_sync3 <= Busy_IRQ_sync2;
        end

        always @ (posedge MRxClk)
        begin
            Busy_IRQ_syncb1 <= Busy_IRQ_sync2;
            Busy_IRQ_syncb2 <= Busy_IRQ_syncb1;
        end

        assign Busy_IRQ = Busy_IRQ_sync2 & ~Busy_IRQ_sync3;


        // Assign the debug output
        `ifdef WISHBONE_DEBUG
        // Top byte, burst progress counters
        assign dbg_dat0[31] = 0;
        assign dbg_dat0[30:28] = rx_burst_cnt;
        assign dbg_dat0[27] = 0;
        assign dbg_dat0[26:24] = tx_burst_cnt;
        // Third byte
        assign dbg_dat0[23] = 0; //rx_ethside_fifo_sel;
        assign dbg_dat0[22] = 0; //rx_wbside_fifo_sel;
        assign dbg_dat0[21] = 0; //rx_fifo0_empty;
        assign dbg_dat0[20] = 0; //rx_fifo1_empty;
        assign dbg_dat0[19] = 0; //overflow_bug_reset;
        assign dbg_dat0[18] = 0; //RxBDOK;
        assign dbg_dat0[17] = 0; //write_rx_data_to_memory_go;
        assign dbg_dat0[16] = 0; //rx_wb_last_writes;
        // Second byte - TxBDAddress - or TX BD address pointer
        assign dbg_dat0[15:8] = { BlockingTxBDRead , TxBDAddress};
        // Bottom byte - FSM controlling vector
        assign dbg_dat0[7:0] = {MasterWbTX,
                               MasterWbRX,
                               ReadTxDataFromMemory_2,
                               WriteRxDataToMemory,
                               MasterAccessFinished,
                               cyc_cleared,
                               tx_burst,
                               rx_burst};
        `endif


        endmodule